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The fitting of high-resolution structures into low-resolution

densities obtained from techniques such as electron micro-

scopy or small-angle X-ray scattering can yield powerful new

insights. While several algorithms for achieving optimal fits

have recently been developed, relatively little effort has been

devoted to developing objective measures for judging the

quality of the resulting fits, in particular with regard to the

danger of overfitting. Here, a general method is presented for

obtaining confidence intervals for atomic coordinates resulting

from fitting of atomic resolution domain structures into low-

resolution densities using well established statistical tools. It is

demonstrated that the resulting confidence intervals are

sufficiently accurate to allow meaningful statistical tests and

to provide tools for detecting potential overfitting.
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1. Introduction

While performing their functions, proteins and other bio-

logical macromolecules often form large macromolecular

assemblies. To date, only a relatively small number of these

assemblies have been accessible to the atomic resolution

techniques X-ray crystallography and NMR. Because of the

requirement to generate suitably diffracting crystals for crys-

tallography and because of the upper size limit for NMR, this

fact is not likely to change dramatically in the near future.

Electron microscopy in conjunction with image reconstruction

has now matured into a powerful approach for revealing the

structures of such macromolecular complexes, occasionally, at

least in the presence of symmetry, even reaching near-atomic

resolution (Henderson et al., 1990; Kühlbrandt et al., 1994;

Nogales et al., 1998; de Groot et al., 2001; Holm et al., 2006;

Zhang et al., 2008). However, for most biological specimens

the achievable resolution is limited to 10–20 Å, thus

precluding atomic modeling directly from the data. Atomic

models can often be generated by combining high-resolution

structures or homology models of individual components in a

macromolecular complex with a low-resolution structure of

the entire assembly.

Owing to the relatively low resolution of most density maps

from electron microscopy, objective fitting of atomic models

into these maps is difficult. In the early days, this task was

achieved by manually placing atomic models within the

density to optimize the visual fit, sometimes followed by

computational rigid-body refinement (reviewed in Baker &

Johnson, 1996). By the end of the millennium, the first fully

automatic programs for rigid-body docking had been intro-

duced (Wriggers et al., 1999; Volkmann & Hanein, 1999),

eliminating the inherent subjectivity of the manual fitting

approach. The interactions between components or inter-



actions with other cofactors often result in dramatic confor-

mational changes in the components themselves. The first

attempt to address this issue was to break up the components

into smaller domains or ‘modules’ and to dock these inde-

pendently as rigid bodies into the density (Volkmann &

Hanein, 1999; Volkmann et al., 2000). Later on, many methods

were developed that allowed even higher degrees of flexibility

in the fitting process. These methods were designed to refine a

predefined starting model and sacrifice the global character of

the rigid-body searches. In essence, all available flexible-fitting

methods try to mold a starting model into the density by

balancing force fields that optimize the density fit with force

fields that ensure proper stereochemistry in one way or

another. Examples include the use of normal modes (Tama et

al., 2004; Hinsen et al., 2004), full fledged molecular dynamics

(Trabuco et al., 2008) and a real-space refinement technique

(Chen et al., 2001; Gao et al., 2003) originally developed for

X-ray crystallography (Chapman, 1995).

While flexible-fitting approaches generally perform quite

well with test data where the correct answer is known, there is

currently no method available that allows the judgement of

performance with experimental data when the answer is

unknown. This is especially critical with regard to overfitting.

If too much flexibility is introduced into the fitting process,

then eventually noise will be fitted. In X-ray crystallography,

this problem is traditionally solved by using the free R factor, a

cross-validated measure of fit in Fourier space (Brünger,

1992). Because the free R factor relies on the independence of

the Fourier terms, as is the case in crystallography, it is not

applicable in the same form in electron microscopy, where the

Fourier terms are strongly correlated. It may be possible to

remove some of this correlation in an analogous way to

treating noncrystallographic symmetry (Fabiola et al., 2006),

but the resulting measure would still be more or less heuristic

without any clearly defined limits.

An alternative strategy is to determine whether the addi-

tional degrees of freedom introduced by allowing flexibility

significantly improve the fit in comparison to the fit achieved

with less flexibility. If the inevitably resulting improvement in

the scoring function is not statistically significant, it can be

regarded as spurious and the more conservative fit should be

chosen. This strategy can only be applied if confidence inter-

vals for the scores can be derived. Previously, we introduced

the use of Fisher’s z-transformation (Fisher, 1921) to obtain

confidence intervals for rigid-body fitting of modules into low-

resolution densities (Volkmann & Hanein, 2003). The tech-

nique allows the determination of whether a particular fit is

significantly different from the globally best fit by testing

whether its associated correlation coefficient score falls within

the confidence interval at the desired confidence level. This

leads to a set of fits which are regarded as statistically

equivalent solutions for the fitting problem at hand. Here, we

demonstrate that the z-transformation approach is applicable

even when its exact theoretical underpinnings are not fulfilled.

We also show that the use of flexible-fitting protocols can

significantly decrease accuracy if compared with modular

rigid-body docking.

2. Methods

Firstly, we will outline the underlying statistical framework of

the approach. We will then describe how synthetic data were

generated to test various aspects of the method. This will be

followed by a description of the fitting procedure. Finally, we

will describe the handling of the experimental data used in this

study.

2.1. Fisher’s z-transformation

In a typical fitting experiment, an atomic structure is fitted

into the low-resolution density by optimizing some scoring

function. However, because the data carry measurement

errors, many alternative data sets could be realised by

repeating the experiments, all leading to different scores

(Fig. 1). If we knew this score distribution, we could deduce its

statistical properties such as an estimate of the expectation

value of the score (the mean) or, more importantly in this

context, confidence intervals for the scores that would allow us

to deduce whether one fit is significantly different from

another at a given confidence level. Unfortunately, three-

dimensional reconstructions are difficult to obtain and inde-

pendent reconstructions of the same structure are rarely

available.

One of the more popular and successful scoring functions in

this context is the correlation coefficient. As an added benefit,

confidence intervals for the correlation coefficient can be

obtained even in the absence of the actual score distribution,

relieving us of the need for multiple data sets if we want to

deduce confidence intervals. The correlation coefficient is

defined as

CC ¼

P
ðti � tÞðdi � dÞ

½
P
ðti � tÞ

2 P
ðdi � dÞ

2
�
1=2
; ð1Þ

where the sum is over all voxels in the experimental target

density t and the density d calculated from the coordinates of

the fitted structure using electronic scattering factors. The
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Figure 1
Schematic representation of the statistical underpinnings of fitting
coordinates into density data. Because the data carry measurement
errors, many different data sets (Datan) can be realised. As a
consequence, different correlation coefficients (CCn) arise if the score
is calculated between the coordinates and the various density maps.
Knowledge of this CC distribution would allow the calculation of its
statistical properties, including a confidence interval (CI) for the CC.



overbar denotes an average. Unfortunately, the distribution of

the CC tends to be rather complex. Fisher’s z-transformation

(Fisher, 1921) can be used to simplify things. The transfor-

mation has the form

z ¼
1

2
log

1þ CC

1� CC

� �
: ð2Þ

If the joint distribution of the two densities (t, d) is bivariate

normal, z approximately follows a Gaussian distribution

where the standard deviation of z depends only on the inde-

pendent pieces of information N in the system (Fisher, 1921),

�ðzÞ ¼ 1=ðN � 3Þ1=2: ð3Þ

Once �(z) has been determined, we can use the normality of

the z distribution for hypothesis testing. For example, a

particular CCi is significantly different from the global

maximum CCmax at a given confidence level CL if

1� erfc
zmax � zi

2�ðzÞ

� �
< CL; ð4Þ

where zi is the z-transformed CCi and erfc denotes the

complementary error function. Even though we know that all

CCs to be tested at this stage will be smaller than CCmax, we

use a two-sided test rather than a one-sided test here. The

reason is that an arbitrary solution for the docking problem

could generate a CC that is higher than CCmax if, for example,

flexibility is introduced into the docking process. As we shall

see, the two-sided testing framework allows us to test the

results of flexible fitting in the light of rigid-body fitting.

For the docking problem discussed here, the choice for N in

(3) is not obvious because of the correlation between voxels in

the reconstructions and because the exact spatial resolution in

these types of reconstructions is generally not well defined. If

multiple independent data sets are available, �(z) can be

estimated from the data (Volkmann & Hanein, 2003) but, as

mentioned previously, additional data sets are rarely available.

In addition, deviations of the joint (t, d) distribution from the

assumption of bivariate normality, as may be suspected for

experimental data, may render the estimate of the confidence

interval inaccurate even if a good estimate for �(z) is avail-

able.

2.2. Synthetic test data

To test the applicability of the z-transformation method

outlined above, we used Monte Carlo simulations to gain

direct access to the CC and z-distributions of well defined

docking problems with known solutions. The availability of

these distributions allows us to assess the accuracy of the

estimated confidence intervals under various conditions. Test

target densities were calculated for four different structures.

Their Protein Data Bank (PDB) identifiers and other prop-

erties are listed in Table 1. For each structure a density was

generated on a 2 Å grid using sums of three Gaussians

approximating the electronic scattering factors of the atoms.

Each of these densities was perturbed with different types of

noise.

The bivariate normality assumption would be most accu-

rately fulfilled if the errors in the densities were uncorrelated

Gaussian. To emulate different degrees of deviation from this

assumption and generate more realistic experiment-like

density maps, we mixed in impulse noise (using a Laplacian
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Table 1
Docking summary.

For each entry, the data appearing in the columns are the PDB identifier of the target structure, the PDB identifier of the search structure, the resolution of the
target map, the number of domains used as modules, the number of residues, the sequence identity between target and search structures and the root-mean-square
deviation between C� atoms of the search and target structures after least-squares fitting of the modules, after modular rigid-body docking of the same modules
and after using flexible-fitting protocols. The values for the last column were taken from Trabuco et al. (2008), Jolley et al. (2008), Topf et al. (2008), Topf et al. (2008)
and this study, respectively. The target map resolution used in Jolley et al. (2008) was 14 Å and that used in Topf et al. (2008) was 10 Å. �EM denotes experimental
density extracted from an electron-microscopy reconstruction of human rhinovirus with bound Fab fragment (Smith et al., 1993).

Target Search Resolution (Å) Modules Residues Identity (%) R.m.s.d.lsq (Å) R.m.s.d.mod (Å) R.m.s.d.flex (Å)

1oao chain C 1oao chain D 15 3 729 100 0.92 1.11 2.01
1lfh 1lfg 15 3 691 100 0.94 0.98 1.89
1hwz 1hrd 15 2 491 28 2.58 2.98 4.90
1blb 1a45 10 2 172 35 1.57 2.03 11.50
�EM 1for 28 1 229 100 0.97 2.25 3.60

Table 2
Summary of test data and quality of �(z) estimation.

For each entry, the data appearing in the columns are the Protein Data Bank
identifier of the target structure, the resolution of the target map, the standard
deviation of the actual z-statistics, the estimate of the standard deviation of the
z-statistics calculated according to (5), an accuracy measure for this estimate,
the mean correlation coefficient between target map and search structure, the
mixing factor between Gaussian noise and Laplacian impulse noise (1.0
corresponds to Gaussian only, 0.0 to Laplacian only) and a measure of the
extent of voxel correlation (the relative weight for neighboring voxels in
respect to the central voxel).

PDB
code

Resolution
(Å) �(z)true �(z)est Accuracy CC Mix Weight

1oao 6 0.00753 0.00771 0.0922 0.8693 0.5 0.08
15 0.01087 0.01219 0.4097 0.9419 0.8 0.12
25 0.02498 0.01644 1.1337 0.8649 0.7 0.17

1lfh 15 0.00959 0.00964 0.0207 0.9883 0.5 0.08
20 0.01239 0.01112 0.3889 0.9435 0.8 0.13

20† 0.01066 0.01112 0.1620 0.9108 0.8 0.13
1hwz 10 0.00978 0.01261 0.7970 0.9390 0.5 0.20

15 0.01071 0.01489 0.9653 0.8243 0.9 0.14
20 0.02124 0.01735 0.6655 0.6450 0.6 0.07

1blb 10 0.01567 0.01967 0.7307 0.6239 0.6 0.25
12 0.02191 0.02155 0.0652 0.5619 0.3 0.08
15 0.03031 0.02409 0.7366 0.4842 0.8 0.13



distribution) and allowed various degrees of correlations

between the voxels. The noise level was adjusted to give a

specific target resolution as measured by the 0.5 cutoff of the

Fourier shell correlation, a common resolution measure in

electron microscopy (Böttcher et al., 1997). The corresponding

noise parameters and the target resolutions are listed in

Table 2 and central slices of some of the densities are shown as

insets in Fig. 2. For each condition, 500 maps with different

random seeds were generated. These 500 density maps

(Datan) were used to calculate the CC distribution and its

associated statistical properties, in analogy to Fig. 1, using the

docked search structures (see below) as coordinates.

2.3. Docking procedure for synthetic data

For each of the four target structures, modular rigid-body

docking using a homologous search structure in a different

conformation was performed. The PDB identifiers for both

are listed in Table 1 together with the resolution of the target

map, the number of modules used in the procedure, the

number of residues and the sequence identity between the

target and search structures. All target search pairs exhibit

large-scale conformational changes. The root-mean-square

deviations between the C� atoms of the structures (r.m.s.d.)

after least-squares fitting (Kabsch, 1976) of the individual

search modules to the corresponding regions in the target

structure are listed in the r.m.s.d.lsq column of Table 1.

R.m.s.d.lsq is the best possible r.m.s.d. value for the given

modularization if only rigid-body movements are allowed.

The target maps were calculated as described in the pre-

vious section. The resolution was then reduced by applying a

Butterworth-shaped Fourier space filter at the target resolu-

tion. These maps were then divided into density modules using

the watershed transform (Volkmann, 2002b). The search

structures were divided into domain modules using an algo-

rithm based on comparing the two alternative conformations

(Hayward & Berendsen, 1998). It should be noted that it is not

necessary to have access to the atomic structures of the two

conformations in order to divide the

structure reliably into independently

moving domains. Alternatively, normal-

mode analysis can be used to make this

division (Hinsen et al., 1999) or the

watershed transform can be applied to a

low-resolution density calculated from

the search model to define the module

boundaries.

Once extracted, each domain was

docked into the corresponding density

segment using the global rigid-body

fitting protocol implemented in our

docking software (Volkmann & Hanein,

1999). One important step is to identify

the correct correspondence between the

target density modules and the search

domain modules. In practice, the corre-

spondence between volume and radius

of gyration is usually sufficient and was

trivial for all test cases except eye lens

crystallin (PDB codes 1blb and 1a45).

For this case, each domain was docked

into both density segments and the

correspondence was picked according

to the highest correlation coefficient. In

practice, a significance test using the

technique outlined here can be per-

formed at this stage to decide whether it

is adequate in light of the data to choose

one configuration over another.

After this initial round of global

fitting, an iterative refinement proce-

dure was applied in which a discrepancy

map (Volkmann et al., 2000) was

generated for each domain in turn by

removing the contribution of the other

docked domains from the unsegmented
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Figure 2
Normal probability plots of z-transformed correlation coefficients. For normally distributed
variables, the data points lie approximately on the identity line. The insets show central slices
through representative densities used to calculate the underlying correlation coefficients. The noise
parameters used to generate the maps are listed in Table 2. (a) Maps were calculated at 6 Å
resolution from PDB entry 1oao chain C. (b) Maps were calculated at 15 Å resolution from PDB
entry 1lfh. (c) Maps were calculated at 12 Å resolution from PDB entry 1blb. (d) Maps were
calculated at 20 Å resolution from PDB entry 1hwz.



density. The orientation and position of the remaining domain

was then refined using this discrepancy map. Once this had

been performed for all domains, this discrepancy-mapping–

refinement cycle was repeated until no further changes in

orientation and position occurred. The purpose of this

refinement step is twofold. Firstly, it ensures the removal of

bias from sharp edges and inaccuracies introduced by the

watershed segmentation. Secondly, it removes bias that might

be introduced by erroneous modularization of the search

structure. This is not an issue for the tests presented here, but

is a valid consideration for experimental cases in which the

optimal domain boundaries are unknown. The iterative

discrepancy mapping can identify inadequate modularization

and allows refinement of the module boundaries. For the test

cases presented here, the maximum number of iterations was

three. This number tends to be higher for experimental cases,

in which inaccuracies are likely to be more pronounced.

As a final step, the docked domains were stitched together

and the stereochemistry at the break points was fixed using the

idealization approach implemented in REFMAC (Murshudov

et al., 1997). The resulting structures were used to calculate the

r.m.s.d. with the C� atoms of the target structure without any

further alignment. These values are given in the r.m.s.d.mod

column of Table 1. The same structures were used without

further alignment to calculate the 500 CCs for each test data

set described in the previous section using the individual noisy

maps. This essentially emulates the situation depicted in Fig. 1.

The resulting standard deviation of the z-distribution, �(z)true,

and the mean CC are listed in Table 2.

2.4. Estimating the standard deviation of the z-distribution

A critical parameter for the determination of confidence

intervals is the standard deviation of the z-transformed CC

distribution �(z). If the underlying parameters follow a

bivariate normal distribution, �(z) only depends on the

number of independent pieces of information contributing to

the CC. This number is ill-defined for the noisy low-resolution

densities obtainable from techniques such as electron micro-

scopy. However, the relevant number should still primarily

depend on the molecular volume, properly corrected for the

spatial resolution of the target reconstruction. Thus, an esti-

mate for N in (3) should be some function Nest = MV/creso,

where creso is a resolution-dependent correction factor to the

molecular volume MV. This resolution correction cannot

easily be derived by first principles because it needs to account

for short-range and long-range spatial correlations, inaccura-

cies in the bivariate normality assumption, noise contributions

and other factors that may exhibit resolution-dependence.

On top of that, there is some dispute in the field as to how

exactly the resolution of a reconstruction should be assessed.

One relatively common resolution measure in electron

microscopy is the 0.5 cutoff value of the Fourier shell corre-

lation (FC0.5), which is calculated using reconstructions from

randomly selected half data sets (Böttcher et al., 1997). Using

the test data described above, we empirically tested the

performance of several correction functions f(FC0.5) as

correction factors creso. The one that yielded the most

consistent estimates for �(z) over a large range of conditions

(Table 2) was creso = uFC0.5, where u is a constant that accounts

for the unit system used. If FC0.5 and MV are expressed in

angstrom units, u = 1 Å2. Thus, we define the estimate of �(z)

for determining confidence intervals in the docking context as

�ðzÞest ¼
1

½ðMV=cresoÞ � 3�1=2
; creso ¼ uFC0:5: ð5Þ

In practice, we first determine the 0.5 cutoff value of the

Fourier shell correlation FC0.5 using two random half sets of

the target data. We then determine MV by resampling the

target map with the Shannon sampling at resolution FC0.5 and

calculating the volume with the resampled volume units that is

closest to the volume given by the molecular composition of

the target structure. The resampling step significantly

increases the accuracy of the estimate, most likely by

accounting for grid aliasing effects. For convenient compar-

ison of the estimated and true standard deviations, we define

an accuracy measure

accuracy ¼ 2 1�
min½�ðzÞtrue; �ðzÞest�

2
þ 3

max½�ðzÞtrue; �ðzÞest�
2
þ 3

� �
: ð6Þ

This operation maps the accuracy measure into the range

between 0 and 1 if N is accurate within a factor of two, which

was shown to be tolerable in terms of confidence-interval

accuracy (Volkmann & Hanein, 2003). The wiggle room in N

allows substantial flexibility, but gross mis-estimation will

render the confidence intervals severely inaccurate. For all our

test cases, including the experimental data discussed below,

quite acceptable estimates for �(z) were achieved using this

procedure (Table 2).

2.5. Normality tests

In addition to a reasonably accurate estimate of �(z), the

normality of the z-distribution is essential for the validity of

the confidence intervals. We used three well established

complementary methods to test the normality of the z-distri-

butions generated by the Monte Carlo simulations. The

Anderson–Darling test is based on empirical distribution

functions (Anderson & Darling, 1952), the Shapiro–Wilk test

is based on variance analysis (Shapiro & Wilk, 1965) and the

third method is based on probability plot correlations

(Filliben, 1975).

In addition, we calculated and visually inspected normal

probability plots for each test data set. Some of these plots are

shown in Fig. 2. Generating the data points in the normal

probability plots involved three steps. (i) The z-transformed

CCs were normalized to zero mean and standard deviation 1,

(ii) the resulting values were ordered from smallest to largest

and the percentiles for each value were determined and (iii)

the standard score corresponding to the value’s percentile was

drawn from the standard normal distribution and was paired

with the value to generate a data point. Normality of the

tested distribution implies that these data points lie more or

less on the identity line. Significant deviations from the iden-

new algorithms workshop

Acta Cryst. (2009). D65, 679–689 Volkmann � Fitting of atomic models into low-resolution densities 683



tity line indicate that the tested data do not follow a normal

distribution. Such deviations can easily be picked up by eye

(we essentially employed the time-honored interocular trau-

matic test here: you know what the data mean if it hits you

between the eyes).

2.6. Experimental data

We used a 28 Å resolution map of human rhinovirus com-

plexed with Fab fragments (Smith et al., 1993) to test the utility

of the outlined z-transformation procedure with experimental

data. The crystal structure of exactly the same construct was

solved to atomic resolution a few years later by X-ray crys-

tallography (Smith et al., 1996), giving a one-to-one corre-

spondence between the low-resolution density obtained by

electron microscopy and the corresponding atomic structure.

For the tests performed here, we pretended that only the

electron-microscopy reconstruction, the structure of the

uncomplexed virion (Rossmann et al., 1985) and the structure

of the unbound Fab fragment (Liu et al., 1994) were available.

To isolate the Fab density from the reconstruction, we went

through the following steps. Firstly, we docked the crystal

structure of the uncomplexed virion into the reconstruction.

We then removed the contribution of the docked model using

discrepancy mapping. One of the symmetry-related densities

corresponding to a single Fab fragment was boxed out from

the discrepancy map for further analysis. The Fab fragment

used to decorate the virion consists of two domains, the so-

called variable and constant domains, which are named after

their tendencies towards sequence variation. The domains are

clearly visible in the reconstruction. However, only the vari-

able domain, which is directly attached to the virion, is

ordered in the crystal structure of the complexed virus and

thus available for direct atom-to-atom comparison. Applica-

tion of watershed segmentation to the discrepancy map

extracted in the previous step readily yielded two segments.

Only the segment closest to the virion was used for subsequent

calculations. The corresponding density is shown as a chicken-

wire representation in Fig. 3.

This density was used as a target map with the corre-

sponding domain from the structure of the unbound Fab

fragment (PDB code 1for) as a search structure using our

global rigid-body docking protocol (Volkmann & Hanein,

1999). The best CC was then extracted and the estimate for

�(z) was calculated according to (5) and used to derive the

limits of the CC confidence interval at confidence level

99.99%. Fits that corresponded to CCs within the confidence

interval were then extracted from the global list for further

analysis. Representations of this solution set are shown in

Fig. 3.

3. Results and discussion

The confidence intervals of correlation coefficients from fitting

atomic structures into low-resolution densities are useful tools

for judging the quality of the fit and for detecting ambiguities

in fitting space (Volkmann & Hanein, 2003). They allow the

extraction of sets of fits that all satisfy the data within its

margin of error. These solution sets can in turn be used to

extract fitting parameters such as atomic coordinates or

interaction distances as well as their error estimates, making

them amenable to statistical hypothesis testing. Here, we

investigate the applicability of the underlying statistical

framework under a wide variety of non-ideal conditions using

new algorithms workshop
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Figure 3
Docking of Fab fragment into the equivalent density segment derived
from an experimental electron-microscopy reconstruction. (a) The
correct structure is shown in red (Fab fragment) and blue (virion). A
representation of the ensemble of fitted structures with correlation
coefficients within the confidence interval (solution set) is shown in white.
The asterisk indicates the Fab-fragment loop that locally changes
conformation upon binding to the virus. (b) Root-mean-square deviation
within the solution set mapped onto the structure with thickness and
color. Thinner and blue corresponds to small deviations and thicker and
red to large deviations. The 28 Å resolution density map used for the
docking experiment is shown as black chicken wire.



Monte Carlo methods and demonstrate the utility of the

confidence-interval approach to experimental low-resolution

data with known corresponding atomic structure. In addition,

we tested the performance of modular-docking protocols in

terms of achievable accuracy and compared them with various

flexible-fitting methods.

3.1. Accuracy of modular rigid-body and flexible fitting

Most observed protein conformational changes involve

movements of rigid domains that have their internal structure

preserved (Krebs & Gerstein, 2000; Gerstein & Krebs, 1998;

Hayward, 1999). Modular fitting of rigid-body domains should

be adequate to accurately model those types of changes.

Whether fitting methods based on higher degrees of flexibility

yield more accurate structures than those based on modular

rigid-body fitting is an open question. We chose four cases to

test how well the modular-docking approach performs in

comparison with various flexible-fitting methods proposed in

the literature (Table 1). It should be noted that these struc-

tures had previously been selected by others as adequate test

cases for flexible-fitting methods (Trabuco et al., 2008; Wrig-

gers & Birmanns, 2001; Jolley et al., 2008; Topf et al., 2008).

3.1.1. a-Subunit of acetyl-coenzyme A synthase/carbon
monoxide dehydrogenase. The crystal structure of the acetyl-

coenzyme A synthase/carbon monoxide dehydrogenase

assembly (Darnault et al., 2003) revealed two significantly

different conformations of the �-subunit (PDB entry 1oao,

chains C and D). A comparison of the two conformations

indicated that this change can be approximated by hinged

movements of three rigid domains. We performed the

modular-docking protocol outlined in x2 using a 15 Å reso-

lution calculated density map from chain C and the atomic

structure of chain D, broken up into these three domains, as a

search structure. This resolution was chosen because 15 Å

corresponds to a reasonable target resolution for an average

single-particle reconstruction project these days. The fit

resulting from the modular-docking protocol for this test, with

an r.m.s.d. of 1.11 Å, is close to the 0.92 Å achievable by least-

squares fitting of the C� atoms.

The same docking problem was tackled as a test case for

molecular-dynamics-based flexible fitting (Trabuco et al.,

2008). The resulting r.m.s.d. at 15 Å resolution using this

approach (2.01 Å) is significantly worse than that from

modular docking; it is still slightly worse (1.25 Å) if a target

map at 10 Å resolution is used. Only if data at 5 Å are avail-

able does the flexible-fitting approach surpass the modular

rigid-body approach, with an r.m.s.d. of 0.75 Å. This also

improves upon the least-squares r.m.s.d., indicating that at this

resolution nonrigid conformational changes can be picked up

correctly by this flexible-fitting approach. It is worth noting

that in three dimensions the amount of information increases

by a factor of 3.375 on going from 15 to 10 Å resolution and by

a factor of 27 on going from 15 to 5 Å resolution.

3.1.2. Lactoferrin. The iron-binding protein lactoferrin

exhibits a large conformational change when iron binds to

it (Norris et al., 1991). Comparison of the conformations

suggests three hinged rigid-body domain movements to

explain the change. We performed a modular-docking study at

15 Å resolution using apolactoferrin (PDB code 1lfh) as a

target and iron-bound lactoferrin (PDB code 1lfg), broken up

into three domains, as a search structure. Here, the r.m.s.d.

after modular docking (0.98 Å) was almost indistinguishable

from the least-squares r.m.s.d. (0.94 Å).

The same docking problem was addressed by two flexible-

docking approaches. One used flexible fitting based on vector

quantization and molecular-mechanics force fields (Wriggers

& Birmanns, 2001). This study was also performed at 15 Å

resolution and the best r.m.s.d. achieved with this approach

was 2.72 Å, exhibiting local deviations of up to 9 Å (Volkmann

& Hanein, 2003). The second approach was based on con-

straint geometric simulations (Jolley et al., 2008). This study

evaluated the r.m.s.d. at various resolutions, the lowest of

which was 14 Å. At this resolution the best r.m.s.d. was 1.89 Å.

The best overall r.m.s.d. of 1.27 Å was achieved at 3.3 Å target

map resolution. Even at near-atomic resolution, this flexible-

fitting approach does not provide any advantage over modular

rigid-body fitting at 15 Å resolution for this test case.

3.1.3. Glutamate dehydrogenase. This test involved

docking the structure of Pyrococcus furiosus glutamate de-

hydrogenase (Britton et al., 1992), split into two domains as

indicated by comparison of the conformations, into a 15 Å

resolution target map calculated from the bovine homologue

(Smith et al., 2001). The sequence identity between the two is

28% and there are several inserts present in the bovine form

(PDB code 1hwz) that are not present in the P. furiosus form

(PDB code 1hrd). This includes an extended finger-like helix–

turn–helix motif of 46 residues. This region was easily identi-

fied by watershed segmentation and was deleted from the

target map after completing the initial step of the modular-

docking procedure but before invoking the iterative refine-

ment. Removal of extra density during refinement is not

strictly necessary but does tend to increase the accuracy of the

docked structure. In this case, a 0.09 Å improvement in r.m.s.d.

can be achieved by deleting the density of the helix–turn–helix

motif prior to the iterative refinement. The r.m.s.d. of the final

structure (2.98 Å) is again very close to the least-squares-

based r.m.s.d. (2.58 Å).

The same fitting task was addressed using a hierarchical

flexible-fitting procedure involving Monte Carlo-based

refinement of successively smaller structure fragments (Topf et

al., 2008). This study was performed with target maps calcu-

lated at 10 Å resolution. Despite the significant increase in

information corresponding to the use of higher resolution

data, the best r.m.s.d. achieved with this method (4.90 Å) was

significantly higher than the r.m.s.d. achieved by modular

docking.

3.1.4. Eye lens crystallin. The last test case also involved the

fitting of homologous structures; in this case the structure of

�-crystallin (Nalini et al., 1994) was used as a target and

�-crystallin (Norledge et al., 1997), divided into two domains,

was used as a search structure. The sequence identity between

the two is 35%. This case was difficult in various ways. (i) This

is the smallest structure used in this study; the single domain
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modules are only �80 residues. This fact implies that less

information is available for fitting than in the other test cases.

(ii) Both modules are highly similar in structure and shape,

consisting of relatively symmetrical �-barrels. As a conse-

quence, the assignment of each domain to its corresponding

segment is not trivial and after fitting the barrel alignment

might be out of register. (iii) The conformational change is

large. The centers of masses of the barrels in the extended

�-crystallin (PDB code 1blb) are 43 Å apart, whereas this

distance is only 24 Å in the compact �-crystallin structure

(PDB code 1a45). This change is primarily achieved by

stretching the linker between the two barrels, which makes

modeling of the linker regions using the modular-docking

approach difficult.

When we used our approach with a target map at 15 Å

resolution one of the barrels aligned within 2.5 Å r.m.s.d.,

whereas the second one was out of register by one �-strand. It

appears that at this resolution this configuration is the true

correlation maximum because even when using only local

refinement and the correct least-squares-based alignment as a

starting point the structures would misalign in the same way.

Deletion of the linker region in the search structure did not

improve the situation. This result has far-reaching conse-

quences for fitting strategies. The hierarchical multi-resolution

strategy often employed in registration of volumes derived by

MRI or other clinical imaging techniques (Studholme et al.,

1996) is not applicable for docking atomic structures into low-

resolution density maps. The test case presented here shows

that there is a real danger of getting stuck in the wrong local

maximum of the score function. Global searches need to be

performed at the highest available resolution.

In order to obtain the correct registration of the �-strand,

data up to a minimum of 10 Å resolution need to be included.

However, even in this case the radius of convergence of the

iterative idealization step is insufficient to mend the ends of

the broken linker. The ends first need to be moved manually

within �10 Å of each other, at which point the idealization is

capable of generating a stereochemically sensible conforma-

tion of the linker region. The r.m.s.d. of the resulting model

with the target structure is 2.03 Å and compares quite favor-

ably with the least-squares-based r.m.s.d. of 1.57 Å. The

crystallin docking was also chosen as a test case for the hier-

archical approach mentioned in the last paragraph (Topf et al.,

2008). However, this method failed to align the �-barrels

correctly even at 10 Å resolution.
3.1.5. Summary. In all four test cases the modular-docking

approach yielded r.m.s.d.s within 0.5 Å of what was achievable

by least-squares fitting of the C� coordinates. While quite

remarkable, this is not necessarily a surprising result. For each

domain or module, only six parameters (three translational

and three rotational) need to be fixed. This problem is highly

overdetermined for most practical cases. This also makes the

method very resilient against random noise, which has little

influence on the accuracy of the docking (Volkmann, 2002a).

The question is not whether there are enough pieces of

independent information in the data to support the degrees of

freedom used for fitting (as one would ask for flexible fitting);

the question is whether the level of detail in the density is fine

enough to nail down the six parameters accurately and

uniquely. With the availability of confidence intervals, these

questions become testable hypotheses.

The global rigid-body fitting protocol implemented in our

docking software (Volkmann & Hanein, 1999) is fast and

the modular-docking experiments described here took only

between 1 and 3 min on a standard Linux workstation. Thus, a

full global analysis can easily be performed and, together with

the z-transformation technique and the associated confidence

intervals, ambiguities can be detected and the accuracy (or at

least the precision) of the fit can be estimated (Volkmann &

Hanein, 2003). In all tests presented here, flexible-fitting

protocols significantly deteriorated the r.m.s.d. (Table 1), most

likely owing to overfitting and inadequate distortions of the

search structures. Only at 5 Å resolution, a 27-fold increase in

information content over our 15 Å resolution map, did one of

the flexible-fitting methods (Trabuco et al., 2008) appear to

pick up conformational changes that cannot be adequately

modeled as movements of rigid domains and improved upon

the results obtained by modular rigid-body docking at 15 Å

resolution.

3.2. Validity of deducing correlation confidence intervals
using Fisher’s z-transformation

Reliable confidence intervals for correlation coefficients

(CC) obtained from docking atomic structures into low-

resolution density maps are an attractive possibility to allow

testing of statistical hypotheses, to detect ambiguities in fitting

space and to derive precision estimates for the fitting para-

meters. The approach outlined in x2 relies on the application

of Fisher’s z-transformation (Fisher, 1921) to the measured

CC, which then allows the derivation of confidence intervals

from the volume and resolution of the experimental recon-

struction alone (1)–(5).

There are two major requirements that need to be met in

order to derive meaningful confidence intervals using this

procedure. (i) The underlying distribution of the z-trans-

formed CC variable must be approximately normal and (ii)

the estimate of the standard deviation of this distribution,

�(z), must be sufficiently accurate. The normality of the z-

distribution is guaranteed if the two variables used for calcu-

lating the CC, here the density values calculated from the

search structure and those taken from the experimental map,

are drawn from a bivariate normal distribution. While the

voxel errors in reconstructions from frozen-hydrated samples

appear to be nearly normally distributed, data that were taken

in the presence of stain often exhibit significantly heavier tails

than the normal distribution (van der Heide et al., 2007).

Correlations between individual voxels and their neighbors

can further complicate things.

3.2.1. Normality condition. In order to test whether

z-transformed CC values obtained under the clearly non-ideal

conditions outlined above still follow a normal distribution, we

used Monte Carlo simulations to generate sets of noise-

corrupted data that were used to explicitly derive the corre-
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sponding CC distributions and to analyze the resulting

z-distributions. We used the target maps of the docking

experiments described in the previous section as starting

points and generated three synthetic data sets for each using

different mixes of Gaussian and impulse noise as well as

different extents of voxel correlations (summarized in Table 2).

The signal-to-noise ratio for each set was chosen in order to

give maps with resolution between 6 and 25 Å as measured by

the 0.5 cutoff of the Fourier shell correlation. This resolution

estimate was also used to calculate the estimate for �(z) using

(5). The coordinates used to calculate the CCs with these maps

were those obtained by modular docking as described in the

previous section. In addition, we performed a rigid-body

fitting of the entire unmodified iron-bound lactoferrin into the

map calculated from apolactoferrin, leading to a docking

solution with obvious and severe mismatches. The purpose of

this exercise was to evaluate the potential impact of such

mismatches on the z-distribution.

We analyzed all 12 z-distributions for normality using three

well established complementary tests (Shapiro & Wilk, 1965;

Filliben, 1975; Anderson & Darling, 1952). None of the

distributions were significantly different from a normal

distribution according to any of the tests at the 1% and 5%

significance levels. Visual inspection of normal probability

plots confirmed that all conditions generated plots in which

most data points lie on the identity line as expected for a

normal distribution. Four of the plots are shown in Fig. 2

together with central slices through a representative noisy

map used for calculating that particular CC distribution. The

plot in Fig. 2(d) is the one that appears most nonlinear of all

the conditions tested. In conclusion, the z-transformed CC

values are approximately normally distributed for all tested

conditions, regardless of voxel correlation, impulse compo-

nents, resolution, the size of the underlying structure, mis-

matches in the docking or the quality of the search structure in

relation to the target (i.e. the degree of homology). It appears

that the normality of the z-distribution is extremely robust in

the context of fitting atomic models into low-resolution

densities and that the assumption of normality will be valid

under most experimental conditions.
3.2.2. Accuracy of standard deviation estimate. In addition

to analyzing the normality, we used the z-distributions to

determine the actual standard deviation �(z)true and com-

pared it with the resolution-based estimate �(z)est. We have

shown previously that mis-estimating the correlated variable

N (see equation 3) by a factor of two has very little influence

on the size and shape of the corresponding sets of fits with CCs

within the corresponding confidence intervals (Volkmann &

Hanein, 2003). We translated this condition into an accuracy

measure (equation 6; values listed in Table 2) of the estimated

value compared with �(z)true. If this accuracy value is between

0 and 1 then the corresponding estimate of N is within the

tolerable factor of two. With one exception, the accuracy

values of all tests fell well within the desired range. The one

case that fell outside the range corresponded to an actual

factor of 2.3, which was hardly a dramatic deviation. We

conclude that for the most part the volume- and resolution-

based estimate of �(z) is sufficiently accurate to allow the

construction of meaningful confidence intervals.

3.3. Application to experimental data

We applied the rigid-body docking procedure and the

derivation of the confidence interval to experimental data

extracted from a 28 Å resolution electron-microscopy recon-

struction of human rhinovirus with bound Fab fragments

(Smith et al., 1993). We docked the unbound structure of the

Fab fragment (Liu et al., 1994) into the corresponding density

segment (black chicken wire in Fig. 2b) extracted by a

combination of discrepancy mapping and watershed segmen-

tation (see x2). The global CC maximum for this docking task

was 0.9831. (5) was used to derive a �(z) estimate of 0.03062,

corresponding to 1069 independent pieces of information N.

The corresponding lower limit for the CC confidence

interval at the 99.99% confidence level is 0.9764. Repre-

sentations of the solution set extracted from the global list

with this cutoff are shown in Fig. 3. The correct coordinates

extracted from the crystal structure of the rhinovirus with

bound Fabs (Smith et al., 1996) are, with a CC of 0.9769,

included in the confidence interval (see also Fig. 3a). In fact,

only if the confidence level falls below 99.97% does the the

correct solution fall outside the confidence-interval limits. This

result indicates that the z-transform-based confidence interval

can correctly capture the correct solution in experimental

densities, even at resolutions as low as 28 Å. The shape of the

confidence interval is nontrivial and gives rise to a complex

distribution of deviations in the solution set (Fig. 3b).

However, the one change between the bound and unbound

forms of the Fab fragment that cannot easily be modeled by

rigid-body movements (asterisk in Fig. 3a) cannot be deduced

from that distance distribution. This loop of the correct

structure is not covered by the solution set and penetrates out

of the coverage of the ensemble. This means that the accuracy

estimate deduced from the solution set will not be valid for

this loop. The CC of the least-squares-fitted search structure

(0.9870) is practically indistinguishable from that of the

correct structure. Thus, not surprisingly, there is no way to pick

up on this change at 28 Å resolution, at least not with this

scoring function.

The r.m.s.d. of the global CC maximum with the structure in

the Fab-bound virus is 3.40 Å. We calculated an ensemble

average from the solution set by picking the fit that has the

minimum joint r.m.s.d. with all other members. The CC of this

ensemble average is 0.9813 and the r.m.s.d. with the correct

structure is 2.25 Å, a clear improvement over relying on the

highest scoring fit only.

Next, we tested whether flexible fitting could improve

results in this case or, if not, whether our procedure would

detect the corresponding overfitting. We used flexible fitting

based on normal-mode analysis (Tama et al., 2004) to further

refine the results from the modular docking described above.

We chose the ensemble average as a starting point and the

lowest ten nontrivial modes to systematically perturb the

structure in order to improve the fitting score. Ten modes
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appeared to be a reasonable number (supported by visually

inspecting the individual modes) to represent conformational

changes such as relative movements of the two subdomains or

rearrangements of groups of secondary-structure elements

without introducing high-resolution motions such as side-

chain movements. The resulting model had an improved CC of

0.9865 but a significantly larger r.m.s.d. (3.60 Å). This result

clearly indicates that the added degrees of freedom lead to

overfitting. When looking at the confidence intervals, the CC

of the flexible fit is not significantly different from either the

ensemble average or the global rigid-body maximum (at

the 99.99% confidence level). Based on this analysis, the

improvement in the CC would be regarded as spurious. Thus,

in the proposed framework the introduction of additional

flexibility would have been correctly rejected.

It should be noted that the introduction of excessive

amounts of flexibility will eventually break this test. For

example, if 50 normal modes are allowed for the refinement

for this test case, which amounts to allowing side-chain

movements and excessive loop rearrangements, the CC soars

to 0.9982, which is well outside the confidence limits even at

the 99.999% confidence level. While this is clearly a significant

improvement in the score over the rigid-body fit in the

statistical sense, it is also wrong. The key for the test to work as

intended is to only allow additions of flexibility that are more

or less reasonable at a given resolution.

4. Conclusions

We have described and tested a method for obtaining confi-

dence intervals for correlation coefficients derived from fitting

atomic models into low-resolution density maps. Our

approach is based on Fisher’s z-transformation and relies on

two conditions. (i) The z-transformed correlation coefficients

need to be approximately normally distributed and (ii) a

reasonably accurate estimate for the standard deviation of this

distribution must be available. Using Monte Carlo simulations,

we show that both conditions are fulfilled under a large variety

of adverse circumstances. We conclude that these conditions

are likely to be met for most experimental reconstructions.

Our tests on actual experimental data from human rhinovirus

corroborate this conclusion. The confidence interval derived

from this data incorporates the correct structure and allows

the identification of overfitting introduced by allowing flex-

ibility in the fitting. Furthermore, the fitting accuracy of the

ensemble average of all the structures inside the confidence

interval clearly exceeds the accuracy of the fit with the global

score maximum.

In addition, we performed a comparison of modular rigid-

body docking with various flexible-fitting methods in the

resolution range 10–15 Å. In all these test cases, flexible fitting

deteriorated the accuracy obtained by the modular-docking

approach considerably. Only at 5 Å resolution did one of the

methods exceed the quality of the rigid-body fit at 15 Å

resolution. We conclude that flexibility needs to be used with

caution. If the conformational changes mostly arise from rigid-

body movements, modular rigid-body docking is likely to

outperform flexible-fitting approaches in most practical cases.

In addition, the speed of the rigid-body routines allows a full

global analysis and the extraction of all fits that have scores

within the confidence interval for further analysis. Modular

rigid-body docking in conjunction with confidence intervals

provides an adequate and versatile tool for fitting atomic

models into low-resolution densities and for analyzing the

results.
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Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. (1994). Nature (London),

367, 614–621.
Liu, H., Smith, T. J., Lee, W. M., Mosser, A. G., Rueckert, R. R.,

Olson, N. H., Cheng, R. H. & Baker, T. S. (1994). J. Mol. Biol. 240,
127–137.

new algorithms workshop

688 Volkmann � Fitting of atomic models into low-resolution densities Acta Cryst. (2009). D65, 679–689



Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst.
D53, 240–255.

Nalini, V., Bax, B., Driessen, H., Moss, D. S., Lindley, P. F. & Slingsby,
C. (1994). J. Mol. Biol. 236, 1250–1258.

Nogales, E., Wolf, S. G. & Downing, K. H. (1998). Nature (London),
391, 199–203.

Norledge, B. V., Hay, R. E., Bateman, O. A., Slingsby, C. & Driessen,
H. P. (1997). Exp. Eye Res. 65, 609–630.

Norris, G. E., Anderson, B. F. & Baker, E. N. (1991). Acta Cryst. B47,
998–1004.

Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A.,
Griffith, J. P., Hecht, H.-J., Johnson, J. E., Kamer, G., Luo, M.,
Mosser, A. G., Rueckert, R. R., Sherry, B. & Vriend, G. (1985).
Nature (London), 317, 145–153.

Shapiro, S. S. & Wilk, M. B. (1965). Biometrika, 52, 591–611.
Smith, T. J., Chase, E. S., Schmidt, T. J., Olson, N. H. & Baker, T. S.

(1996). Nature (London), 383, 350–354.
Smith, T. J., Olson, N. H., Cheng, R. H., Chase, E. S. & Baker, T. S.

(1993). Proc. Natl Acad. Sci. USA, 90, 7015–7018.
Smith, T. J., Peterson, P. E., Schmidt, T., Fang, J. & Stanley, C. A.

(2001). J. Mol. Biol. 307, 707–720.
Studholme, C., Hill, D. L. & Hawkes, D. J. (1996). Med. Image Anal. 1,

163–175.

Tama, F., Miyashita, O. & Brooks, C. L. III (2004). J. Mol. Biol. 337,
985–999.

Topf, M., Lasker, K., Webb, B., Wolfson, H., Chiu, W. & Sali, A.
(2008). Structure, 16, 295–307.

Trabuco, L. G., Villa, E., Mitra, K., Frank, J. & Schulten, K. (2008).
Structure, 16, 673–683.

Volkmann, N. (2002a). Atomic Model of the Cell: Docking in a
Tomographic Environment. http://www.biophysics.org/discussions/
volkmann-speaker.pdf.

Volkmann, N. (2002b). J. Struct. Biol. 138, 123–129.
Volkmann, N. & Hanein, D. (1999). J. Struct. Biol. 125, 176–

184.
Volkmann, N. & Hanein, D. (2003). Methods Enzymol. 374, 204–

225.
Volkmann, N., Hanein, D., Ouyang, G., Trybus, K. M., DeRosier, D. J.

& Lowey, S. (2000). Nature Struct. Biol. 7, 1147–1155.
Wriggers, W. & Birmanns, S. (2001). J. Struct. Biol. 133, 193–

202.
Wriggers, W., Milligan, R. A. & McCammon, J. A. (1999). J. Struct.

Biol. 125, 185–195.
Zhang, X., Settembre, E., Xu, C., Dormitzer, P. R., Bellamy, R.,

Harrison, S. C. & Grigorieff, N. (2008). Proc. Natl Acad. Sci. USA,
105, 1867–1872.

new algorithms workshop

Acta Cryst. (2009). D65, 679–689 Volkmann � Fitting of atomic models into low-resolution densities 689


